Geometric Compression Using Riemann Surface Structure∗

نویسندگان

  • XIANFENG GU
  • YALIN WANG
  • SHING-TUNG YAU
چکیده

This paper introduces a theoretic result that shows any surface in 3 dimensional Euclidean space can be determined by its conformal factor and mean curvature uniquely up to rigid motions. This theorem disproves the common belief that surfaces have three functional freedoms and immediately shows that one third of geometric data can be saved without loss of information. The paper develops a practical algorithm to losslessly compress geometric surfaces based on Riemann surface structures. First we compute a global conformal parameterization of the surface. The surface can be segmented by holomorphic flows, where each segment can be conformally mapped to a rectangle on the parameter plane, which is guaranteed by circle-valued Morse theory. We construct a conformal geometry image for each segment, and record conformal factor and dihedral angle for each edge. In this way, we represent the surface using only two functions with canonical connectivity. We present the proofs of the theorems and the compression examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

A Conformal Approach for Surface Inpainting

We address the problem of surface inpainting, which aims to fill in holes or missing regions on a Riemann surface based on its surface geometry. In practical situation, surfaces obtained from range scanners often have holes or missing regions where the 3D models are incomplete. In order to analyze the 3D shapes effectively, restoring the incomplete shape by filling in the surface holes is neces...

متن کامل

Geometric theory of meromorphic functions

This is a survey of results on the following problem. Let X be a simply connected Riemann surface spread over the Riemann sphere. How are the properties of the uniformizing function of this surface related to the geometric properties of the surface? 2000 Mathematics Subject Classification: 30D30, 30D35, 30D45, 30F45.

متن کامل

New Proofs of the Torelli Theorems for Riemann Surfaces

In this paper, by using the Kuranishi coordinates on the Teichmüller space and the explicit deformation formula of holomorphic one-forms on Riemann surface, we give an explicit expression of the period map and derive new differential geometric proofs of the Torelli theorems, both local and global, for Riemann surfaces.

متن کامل

Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow

Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003